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Template-Growth of Highly Ordered Carbon
Nanotube Arrays on Silicon

Aijun Yin, Marian Tzolov, David A. Cardimona, and Jimmy Xu

Abstract—This paper reports on the success in and the key con-
ditions for direct growth of carbon nanotubes of unprecedented
uniformity on silicon. The uniformity is ensured through the
growth within the highly ordered nanopores of an alumina oxide
template, which is in turn formed on silicon through anodization
of aluminum of unprecedented thickness evaporated on silicon.
The formation of highly ordered nanopore array by anodization
of thick aluminum evaporated on a noncompliant substrate such
as silicon is made possible through a specially designed process for
evaporating thick aluminum of high quality and good adhesion.

Index Terms—Anodic aluminum oxide template, carbon nan-
otubes (CNTs), silicon.

1. INTRODUCTION

ARBON nanotubes (CNTs) have attracted much atten-
Ction since their discovery (or rediscovery) by Iijima in
1991 [1], thanks to their remarkable electronic, optical, and
mechanical properties, and their potential applications [2],
[3]. Uniformly sized and spaced arrays of vertically aligned
CNTs [4]-[6] are highly desirable for many applications,
including field-emission, microelectronics, electrochemical
probes, molecular interfaces, and microfluidic devices. One
way to synthesize vertically aligned and densely packed uni-
form CNTs that are spatially isolated from each other is to
use a growth template. Highly ordered anodic aluminum oxide
(AAO) template can be obtained from Al anodization [7]. Such
a template has been used for freestanding film of CNT arrays
[8], [9]. It offers the possibility of tailoring the size and density
of the nanotubes over a wide range. However, such CNT arrays
grown in freestanding AAO/Al templates are limited in appli-
cations because they are not readily interfaced electronically
with external circuits. Integrating such highly ordered CNT
arrays onto Si substrates will broaden their applications and
provide possibilities for incorporating CNT material properties
or functionality with the Si electronics. This could perceivably
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be done by growing CNTs in a highly-order nanopore array
template formed directly on silicon. Though formation of AAO
in evaporated or sputtered Al film on a Si substrate itself has
been shown possible [10]-[12], attempts to grow highly ordered
CNT arrays in this structure have met with little success partly
because of the need for, and the difficulty in, forming thick
enough high-quality Al on silicon and because of the added
challenge in keeping such a thick film on a noncompliant sub-
strate from peeling off in the subsequent anodization step or the
high-temperature CNT growth. It is likely for this reason, we
believe, that there has been no prior report on growth of highly
ordered nanotube arrays in an alumina template on silicon.
Compared with the successful formation of highly ordered thin
AAO films on silicon by anodization of a thin Al film nanoim-
printed either by mold pressing or lithographical methods
[13]-[16], making avail of a direct anodization approach would
present a significant advantage by virtual of eliminating one set
of processing steps that are both demanding and costly.

In this paper, we show that: 1) highly ordered arrays of
nanopores can be formed by self-organization in anodization
of a thick Al evaporated directly on silicon and 2) subsequent
growth in the nanopore template can yield vertically oriented
CNT arrays of unprecedented uniformity directly on Si sub-
strates. To this end, we deployed a specially designed process
of e-beam evaporation, optimized the deposition conditions for
obtaining thick Al films with good adhesion to the Si substrate,
and developed a timed anodization process that seems to work
reliably. This success is expected to lead to many applications
in nanoelectronics over and beyond CNTs that would benefit
from the direct electronic interface with silicon enabled by this
approach.

II. EXPERIMENT

For depositing thick (up to 50 gm) and high-quality Al film
on silicon, conventional e-beam evaporation procedure and
evaporators are found to be inadequate because of the limita-
tions in the evaporation rate and total amount and oxidation
during a long deposition or multiple evaporations. To counter
this problem, we used a specially designed high vacuum
e-beam evaporator that is equipped with a custom-made sub-
strate holder, featuring temperature control and axial rotation
to allow in situ annealing with minimal oxidation and high
film uniformity. In order to ensure good adhesion during the
anodization, a thin layer (~5 nm) of Ti between Al and Si was
predeposited in the case of the thick Al films.

Anodization of the evaporated Al film was carried out using
a two-step method [7]. At the end of the anodization process,
there is a barrier layer at the bottom of the pores which can be

1536-125X/$20.00 © 2006 IEEE
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removed either by chemical wet-etch using 0.5 M phosphoric
acid or by dry-etch using chlorine-based gases.

CNT growth within the arrayed nanopores was then carried
out by the same chemical vapor deposition (CVD) method as
first demonstrated in 1999 and refined over the years [8]. Con-
trolled exposure of the CNTs from the AAO template can be
achieved by applying a combination of dry-etching and wet-
etching processes, to obtain a given length while keeping the
extruded nanotubes from bundling into haystacks [17].

III. RESULTS AND DISCUSSION

To obtain high-quality thick Al films on silicon, we ex-
perimented with various deposition conditions, including the
substrate temperature (up to 623 °C), the evaporation rate, and
the sample cooling rate. High-quality Al films with thickness
of 50 um on Si substrates were achieved, as evidenced in the
anodization results presented below, by finely tuning several
key deposition conditions for: 1) in situ annealing of the Al
film; 2) controlled cooling rate of the sample; and 3) substrate
rotating during deposition. The experimental results show that
both substrate temperature and cooling rate after deposition
have a major effect on the quality of the Al films. High substrate
temperatures will result in rough or island-like Al films, with the
formation of grooves or cracks at temperatures above 500 °C,
while low substrate temperatures and high cooling rates may
result in poor adhesion of the Al film. Both cases can be partly
explained by the evolution of the mechanical stresses, including
the intrinsic and thermoelastic stresses, in the film-on-substrate
system. There are optimal deposition parameters for which
the overall stress is minimized. From our experimental results,
we found that the optimal temperature lies in the range of
200 °C-400 °C, and the cooling rate is around 10 degree/min.
The use of a Ti adhesion layer prevented the peeling off of
the Al film from the Si surface during anodization. This is
attributed to the difference among the thermal expansion coef-
ficients of Al, Ti, and Si (with values of 25 x 107, 8.5 x 107°,
and 3 x 107% °C™!, respectively) and to the fact that Ti is
chemically less active than Al during anodization, thereby,
introduces an effective “shock absorption” in the anodization
current change due to the material change when the anodization
front reaches the silicon.

After the two-step anodization, the Al layer is completely
consumed and turned into a nanopore array alumina film. The
total thickness of the deposited Al film is critical to the degree
of ordering of the nanopores. A thin Al layer does not allow
enough time for the self-organization process to evolve the or-
dering of the nanopores from their initial random distribution,
as shown in Fig. 1(a), to a highly ordered one. We found through
the experiments that highly ordered hexagonal pore arrays can
be obtained from Al films of thicknesses greater than 40 pm, as
shown in Fig. 1(b). The degree of spatial ordering of the pore
structures can be clearly assessed in the fast Fourier transform
(FFT) images of samples in which concentric rings are seen for
the thin Al film Fig. 1(c) and a well-defined sixfold pattern is
observed for the AAO from a thick Al film, Fig. 1(d), indicating
the hexagonal symmetry with long range order. Fig. 1(e) and (f)
show the pore size or CNT diameter distributions for both cases,
respectively. It is clear that CNTs grown in an AAO template
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Fig. 1. Top view of AAO templates, with CNT arrays, from: (a) thin (10 pzm)
and (b) thick (40 pm) Al films, respectively, where AAO membranes were
formed in 0.3 M oxalic acid at 40 V and partially removed by wet-etch after
CNT growth. (c) and (d) are the corresponding FFT images reflecting the or-
dering of the pores or CNTs. (e) and (f) are the CNT diameter distribution graphs
of the samples. The axes in both graphs are scaled in the same range for easy
comparison.

formed from a thin Al flim has a broad diameter distribution and
various distorted shapes [Fig. 1(a), (e)], while uniform CNTs,
with a narrow size distribution and regular tubular shapes were
obtained in the template formed by anodization of a thick Al film
[Fig. 1(b), (f)]. It should be mentioned here that, from TEM im-
ages (not shown here), CNTs grown from the AAO template are
multiwalled and polycrystalline. Improved crystallinity was ob-
tained via high-temperature annealing in vacuum or inert gas at-
mosphere at 1400 °C—1700 °C; however, some defects remain,
which is in accordance with the results from other groups [18],
[19].

We note that normally a barrier layer would exist at the
bottom of the anodized pores in the AAO film after the an-
odization. This barrier can be removed via continued chemical
wet-etching [20] and/or dry-etching (reactive ion etching (RIE)
or ion-mill, in case of thin AAO membranes) [21]. Hence, the
CNTs grown afterwards could have direct physical contact with
the Si substrate, and in effect, may form an electronic hetero-
junction structure. However, the anodization process exhibited
complex behavior when the anodization front approached the
interface, with possible Si anodization occurring after the Al
film and the Ti buffer layer (if any) were totally anodized. By
monitoring the change of the anodization current, one can stop
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the anodization at the moment when the silicon interface is
reached.

The unprecedented uniformity is not only in diameter and
spacing but also in length, which is defined by the thickness of
the AAO template which in turn can be altered with the duration
of the first anodization step, or if necessary, even with an inser-
tion of an additional anodization. Combination of dry and wet
etchings can be used to selectively etch away from the top of the
AAO membrane and thereby leave a portion of the nanotubes
exposed. Controllably exposing the CNTs from the AAO ma-
trix is achieved with the same process as described earlier [17].
Using the exposed CNT array as a platform for biosensing ap-
plications has been demonstrated [22]. With the top tip of the
nanotube exposed and its bottom in contact with the silicon,
the conductance characteristics of the system can be studied.
Again, very rich behaviors can be expected from such a unique
system with a heterojunction between two dissimilar materials
as well as dimensionalities (three-dimensional to quasi-one-di-
mensional) [23] which naturally call for detailed and in-depth
investigations which we hope this report will help stimulate in
future follow-up studies. It has been shown by multiple groups
that laser annealing and high-temperature CVD growth both can
improve the crystallinity of CNTs. In this regard, the growth of
highly ordered nanotubes on silicon reported here offers the ad-
ditional advantage over that on an aluminum substrate because
it permits a higher growth and/or annealing temperature.

IV. CONCLUSION

In summary, this work demonstrates that highly ordered
nanopore arrays of exceptional uniformity can be fabricated
directly on silicon substrates by controlled anodization of
a thick Al film deposited on a Si substrate under carefully
optimized conditions. The anodized aluminum nanopore array
film on silicon can then be used as a growth template for CVD
growth of CNT arrays of unprecedented uniformity on silicon.
This work adds to our tool set a controlled and scalable process
for integrating highly ordered CNT arrays onto Si, and enables
a wide range of applications in electronics, sensors, displays,
and resonators.
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